上海口腔医学 ›› 2024, Vol. 33 ›› Issue (1): 6-12.doi: 10.19439/j.sjos.2024.01.002

• 论著 • 上一篇    下一篇

掺镁纳米多孔钛涂层的生物特性及促成骨分化作用

赵姗1,2, 张凌3, 李胜男1, 康楠1, 孟箭1,*, 李晓东1,*   

  1. 1.徐州市中心医院 口腔科,江苏 徐州 221000;
    2.博罗县人民医院 口腔科,广东 惠州 516199;
    3.上海交通大学医学院附属第九人民医院 口腔颌面-头颈肿瘤科,上海 200011
  • 收稿日期:2022-11-18 修回日期:2023-03-13 出版日期:2024-02-25 发布日期:2024-03-07
  • 通讯作者: 李晓东, E-mail:863303398@qq.com;孟箭, E-mail:mrocket@126.com。*共同通信作者
  • 作者简介:赵姗(1995-),女,在读硕士研究生,E-mail:1729112319@qq.com
  • 基金资助:
    国家口腔疾病临床医学研究中心开放课题(NCRCO-202101); 徐州市科技计划项目(KC21187); 徐州医科大学附属医院发展基金资助项目(XYFY2020035)

Biological characteristics and osteogenic differentiation of magnesium-doped nanoporous titanium coating

ZHAO Shan1,2, ZHANG Lin3, LI Sheng-nan1, KANG Nan1, MENG Jian1, LI Xiao-dong1   

  1. 1. Department of Stomatology, Central Hospital of Xuzhou. Xuzhou 221000, Jiangsu Province;
    2. Department of Stomatology, Boluo County People's Hospital. Huizhou 516199, Guangdong Province;
    3. Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People′s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine. Shanghai 200011, China
  • Received:2022-11-18 Revised:2023-03-13 Online:2024-02-25 Published:2024-03-07

摘要: 目的: 通过微弧氧化(micro-arc oxidation,MAO)将生物活性镁离子掺入纳米多孔钛基础涂层,探讨其物理特性及对成骨的影响。方法: 通过改变MAO电解液成分,控制多孔钛涂层中掺镁量,制备非含镁和含镁钛多孔钛涂层(MAO、MAO-mg)。采用扫描电镜(SEM)、粗糙度及接触角和能量色散X射线光谱仪(EDS)对样品进行表征分析,电感耦合等离子体/光学发射光谱仪(ICP-OES)测定掺镁纳米多孔钛涂层的Mg2+释放能力。通过活/死双染、CCK-8 检测材料增殖-毒性,并使用FITC-鬼笔环肽通过染色β肌动蛋白,确定细胞骨架结构。通过茜素红(ARS)、碱性磷酸酶(ALP)染色及实时聚合酶链式反应(qRT-PCR)确定涂层对体外成骨分化的影响。采用SPSS 25.0软件包对数据进行统计学分析。结果: 加入镁离子的MAO电解液不会改变多孔钛涂层物表面特征,MAO制备出的各组涂层具有相似的微孔结构(P>0.05),MAO处理组(MAO、MAO-mg)表面粗糙度和接触角无显著差异(P>0.05),但显著高于Ti组(P<0.05)。EDS及ICP分析显示,镁离子成功掺入并从材料中释放。活/死双染及细胞增殖测定显示,与Ti组相比,MAO处理组无毒(P>0.05),且随着细胞培养时间延长,MAO-mg显著促进细胞增殖(P<0.05)。MAO-mg组ALP、ARS染色效果显著高于其他组;qRT-PCR显示,MAO-mg组的Runx2 mRNA(P<0.05)、ALP(P<0.05)和骨钙素OCN(P<0.05)表达显著高于Ti、MAO组。结论: MAO成功制备含镁纳米多孔钛涂层,且表现出明显的促成骨分化作用。

关键词: 微弧氧化, 掺镁纳米多孔涂层, 成骨整合, 镁离子, 骨诱导性

Abstract: PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of β-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.

Key words: Micro-arc oxidation, Magnesium-doped nanoporous coating, Osteogenic integration, Magnesium ions, Osteoinductiveness

中图分类号: